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INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 
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Von Karman Institute for Fluid Dynamics, Chausie de Waterloo 72, 8-1640 Rhode-St.-Genese, Belgium 

SUMMARY 
The two-dimensional incompressible Navier-Stokes equations in primitive variables have been solved by 
a pseudospectral Chebyshev method using a semi-implicit fractional step scheme. The latter has been 
adapted to the particular features of spectral collocation methods to develop the monodomain algorithm. 
In particular, pressure and velocity collocated on the same nodes are sought in a polynomial space of the 
same order; the cascade of scalar elliptic problems arising after the spatial collocation is solved using finite 
difference preconditioning. With the present procedure spurious pressure modes do  not pollute the pressure 
field. 

As a natural development of the present work a multidomain extent was devised and tested. The original 
domain is divided into a union of patching sub-rectangles. Each scalar problem obtained after spatial 
collocation is solved by iterating by subdomains. For steady problems a C' solution is recovered at the 
interfaces upon convergence, ensuring a spectrally accurate solution. 

A number of test cases have been solved to validate the algorithm in both its single-block and 
multidomain configurations. 

The preliminary results achieved indicate that collocation methods in multidomain configurations might 
become a viable alternative to the spectral element technique for accurate flow prediction. 

K E Y  WORDS Incompressible Navier-Stokes Collocated Chebyshev schemes Domain decomposition 

1. INTRODUCTION 

Various spectral methods are currently being developed and used in computational fluid 
dynamics. Their major advantage is the high accuracy attained by the resulting discretization 
for a given number of nodes or, conversely, the saving in computational resources for a given 
accuracy. The difficult in applying such methods to real-life problems arises when the geometry 
to be considered departs from a simple rectangle, as first emphasized by Orzag.' 

In the past decade intensive researach has been devoted to overcoming this apparent 
limitation. The present cure technique may be divided into two categories, although combina- 
tions of both are effectively used. On one hand, domain decomposition methods allow the 
partitioning of the global geometry into elementary quadrangles. Active investigation still goes 
on in this field, as underlined by the numerous contributions to dedicated ~ y m p o s i a . ~ . ~  On the 
other hand, suitable co-ordinate transformations are created in order to map the arbitrary 
physical domain into the reference square space where the polynomial bases as interpolants are 
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defined. For 2D computations such transformation methods take on different forms-algebraic, 
interpolation, conformal mapping or solution of differential equations-adding up to a wide- 
spread field as surveyed e.g. by Eisemann and Er leba~her .~  Some spectral practitioners have 
proposed their own technique to cope with non-rectangular geometries. In the case of numerical 
solution of the Navier-Stokes equations Patera5 developed the spectral element method which 
combines mapping with a domain decomposition strategy.6 Curvilinear subdomains were 
incorporated by Metivet’ into a Schwarz domain decomposition algorithm applied to a spectral 
collocation method. 

In the same framework we present a Chebyshev collocated multidomain algorithm 
for the solution of the incompressible Navier-Stokes equations in their primitive variable 
formulation. 

First we introduce and validate the single-block solver and later we illustrate the multidomain 
strategy that has been developed and tested. 

For the single-block solver we have selected the ‘pressure correction’ scheme of Van Kan.6 
The latter is a second-order-in-time ‘semi-implicit’ scheme belonging to the family of projection 
(i.e. fractional step) methods. A typical feature of the present implementation lies in the 
preconditioned iterative methods adopted for the inversion of the two Helmholtz problems for 
the predicted velocity field (arising when the viscous terms are treated implicitly) and of the 
Poisson equation for the pressure. 

A single grid was used for treating both pressure and velocity. Spurious pressure modes do 
not appear because they are implicitly filtered out by the solution process adopted for the 
inversion of the pseudospectral Laplace operator associated with the Poisson problem. The main 
features of the present algorithm satisfy some of the more desirable properties one tries to achieve 
when setting up a computational kernel to be used in a multidomain solver: 

(i) high spectral accuracy 
(ii) no spurious modes except the physical one (constant solution) 

(iii) no staggered grids. 

To validate the algorithm, a series of test cases have been solved, including (i) a driven flow 
in a regularized square cavity for a Reynolds number Re as high as 10,000 and (ii) a thermally 
driven cavity in two different configurations (using the Boussinesq approximation). The capabil- 
ity of the developed code in dealing with unsteady flows has been tested by solving the regularized 
driven capacity at  Re = 10,500, where the flow motion is no longer steady. 

Having set up a quite effective single-block algorithm, we turned our attention to the 
development of a multidomain solver having as a computational kernel the monodomain one. 
On the practical side we took advantage of the typical features of the monodomain algorithm: 
roughly speaking, the solution of the Navier-Stokes equations is achieved by inverting at each 
time step three elliptic scalar problems (i.e. one for the x-component of velocity, one for the 
y-component of velocity and the last one for the pressure). For each scalar problem a 
well-established technique (‘iteration by subdomains’ as proposed by Funaro et al. 9, was 
introduced to solve each scalar equation on the original domain split into a union of 
non-overlapping squares. 

The present paper arranged as follows. After a general overview we present the developed 
single-block algorithm together with the test cases that have been used for its validation. Later 
on we illustrate the multidomain technique and the validation that has been carried out to 
demonstrate the viability of the proposed algorithm. 
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2. BASIC EQUATIONS 

We consider here the incompressible Navier-Stokes equations in the primitive variables 
formulation (u, p) with the non-linear terms expressed in a skew-symmetric form to minimize 
aliasing effects: 

where u is the velocity field, p is the pressure and v = p/p is the kinematic viscosity (p is constant). 
The pressure in the given set of equations (l), (2) is not a thermodynamic variable satisfying an 
equation of state, but is instead a dynamic variable which adjusts itself instantaneously in a 
time-dependent flow to satisfy the incompressibility constraint (2). 

Most existing algorithms of the spectral type deal with the Navier-Stokes equations in the 
primitive variable formulation (u, p). In this case velocity and pressure cannot be approximated 
independently: a compatibility condition must be satisfied by the finite-dimensional spaces in 
which velocity and pressure are sought in order to have a solvable system" leading to a pressure 
field not polluted by spurious pressure wiggles. 

Spurious pressure modes for the two-dimensional case are restricted to the set Z, of all 
polynomials in PN @ P ,  (space of polynomials of degree N) defined as 

where p ,  is the Nth mode (P,+~ is the N + lth) and pX is the first derivative of the Nth mode 
(pN+ is the first derivative of the N + lth). Apart from the physical constant mode, Z, is made 
of polynomials that are of degree N and N - 1. The fact that the spurious modes are 
characterized only by high frequencies is a relevant point of which we will make use in the 
following. 

In the next subsection the projection schemes are introduced and attention is focused on the 
algorithm that we have selected, modified and tested in the present work. 

2. I .  Semidiscretized equations 

In the incompressible Navier-Stokes equations the velocity and pressure are coupled together 
by the incompressibility condition, which makes the equations difficult to solve. Classical 
procedures to overcome this drawback are provided by time-splitting schemes. 

This class of numerical methods was originally devised for the incompressible Navier-Stokes 
equations by Chorin and Marsden" and Temam.l3 The basic idea is to decouple the pressure 
and velocity computations at each time step. The terms associated with the spatial derivatives 
appearing in the given equations might be computed at an old, a new or some intermediate 
time step. Implicit treatment of the viscous terms allows one to overcome the most severe time 
step restriction met when dealing with spectral collocation methods: 

1 
At - Re - (Re, Reynolds number). 

N4 (4) 
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For the present work we selected the 'pressure correction scheme' developed by Van Kan:* 

- i  ,,n+ 1 

+ qv(p"+' - p") = 0, 
At (7) 

V . U " + '  =o .  (8) 

In the first step we solve an intermediate velocity field i which is not physical. In fact, Q does 
not satisfy the incompressibility condition. Then in the second step we project i onto the 
divergence-free space to get an adequate velocity approximation u"' '. 

The scheme with the given boundary conditions is nothing other than a second-order 
Crank-Nicolson Adams-Bashforth scheme with an O(At2) deviation in the tangent direction to 
the boundary: 

p") * t. (9) At n + l -  u"" = u[(n + l ) A t ] ~  - - V(p 
2 

By applying the divergence operator to (7), we find that the latter is equivalent to 

(10) 
2 

At 
A(pn+' - p") = - V * 6, 

la, = 0, 

At each time step we have to solve a cascade of scalar boundary value problems: two 
Helmholtz equations for the predicted value of velocity and a Poisson equation for the pressure. 
Having treated the diffusive part implicitly, the only stability restriction on the time step is given 
by the Courant (CFL) condition 

1 1  
A t - - -  U N 2  (U, maximum velocity), (13) 

which is less severe, at least for low Reynolds number, than the one related to the viscous terms (4) 

2.2. Space discretization 

of orthogonal polynomials, 
The unknowns in the pseudospectral method (strong collocation) are expanded as products 

N M  

9 = c c S m . T , ( X ) T , ( Y ) ,  
n = O  m = O  

if Chebyshev polynomials Tn(x), 

7Jx) = cos(k cos - lx), 
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have been used. The differential equations are satisfied at a particular set of collocation points, 

x j=cos  - , j = O , l ,  ..., N (3 
and boundary conditions are enforced to determine the unknown coefficients gmn.  As mentioned 
in the previous subsection, collocation of ( 5 )  and (10) for a two-dimensional problem, here 
expressed in '6-form', translates into a cascade of three linear systems of equations to be inverted 
at each time step: 

(i I + iy)6Lii = RHS, + V ~ U ; ,  i = 1,2, 

7 
L 

9 6 p  = - - At g h ,  

where 9 and 9 represent the pseudospectral Laplace operator and the pseudospectral di- 
vergence operator respectively, and RHS, is given by 

the advective part having been treated with a skew-symmetric form~la t ion . '~  System (17) or (18) 
might be rewritten in compact notation as 

LU = F ,  (20) 

where L is the matrix representing the pseudospectral approximation to either equation (17) or 
(18), U is the solution vector and F is the source term. 

It is well known that system (20) is ill conditioned," which rules out standard iterative methods 
for its solution (Gauss-Seidel-type methods). Moreover, the matrix L is full and non-symmetric, 
which makes the use of direct methods for the inversion of the above system unat t ract i~e. '~  For 
the same reason it would also be extremely expensive to apply an iterative solution procedure 
directly to the linear set of equations (20). However, these difficulties can be overcome by 
introducing a preconditioning matrix H- '  and rewriting (20) as 

H- 'LU = H-'F. (21) 

If the inverse to H is a good approximation of L-', it is expected to obtain a new system matrix 
H -  'L which is very well conditioned. If this can be achieved, even a very simple iterative method 
such as the Richardson one, 

(22) V" + wH-'(f - LV"), 

H(V"+' - V") = w(f - LV"), 

Vn+l  = 

will perform satisfactorily. Since equation (22) is solved by inverting at each iteration the system 

(23) 

the matrix H must evidently be much easier to invert than the matrix L for the preconditioner 
to be cost-effective. 
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Preconditioning techniques have been investigated extensively using both finite difference 
and finite element methods to discretize the left-hand side of (23).15 In particular, for a 
Chebyshev pseudospectral Laplace operator with Dirichlet boundary conditions, it can be 
shown that a second-order finite difference preconditioner, built on the collocation grid, 
bounds the eigenvalues of the matrix H-'L in the range [1,n2/4] (moreover, all the 
eigenvalues have no imaginary part), independently of the number of nodes used for the 
discretization. When a Neumann problem is considered, the preconditioned eigenvalue 
spectrum is still bounded independently of the number of nodes if a one-sided first-order 
finite difference discretization is used to precondition the first-order operator at the 
b o ~ n d a r y . ' ~  Although a good preconditioner guarantees fast convergence even for a simple 
Richardson method, the procedure for the iterative inversion of problem (20) can be ac- 
celerated by using a conjugate-gradient-like method.I7 Unfortunately, this family of methods 
cannot be applied in a straightforward way to pseudospectral discretizations which always 
produce non-symmetric matrices (only for Fourier approximations of self-adjoint problems 
will the collocation operators be symmetric). In our case it is necessary to select a method 
from the family of generalized conjugate residuals. This class of methods restores the orthogonal- 
ity property of the direction vectors at the cost of a considerable increase in storage. A 
preconditioned version of the generalized conjugate residuals (GPCR) was selected for the 
solution of the present systern.l8 The major drawback of such an algorithm lies in the 
considerable increase in both storage and operation count with respect to the standard 
Richardson algorithm. The price can be partially reduced if the convergence parameters are 
determined using only the last k iterations, which often can be done without reducing the rate 
of convergence too much. We found that very few restarts (K - 3-5) are sufficient to guarantee 
an effective speed-up (-2) with respect to the standard Richardson algorithm. Some more 
efficiency has been gained by 'LU decomposing' the finite difference preconditioner only once 
in a preprocessing stage. 

2.3. Pressure treatment 

As already mentioned, the pressure and velocity must fulfil a compatibility condition' to 
ensure a unique solution for the pressure. In the present work we discretized the pressure and 
velocity by using the same polynomial basis and collocating both on the same nodes (i.e. no 
staggered grid). Even if under such a condition spurious modes (3) should arise, we will show 
that our algorithm behaves like a 'low-bandpass' filter able to remove the spurious pressure 
modes. 

A heuristic explanation might be introduced by considering a simple 1D model problem 

If we select a Chebyshev collocated scheme to discretize (24), (25), we face only one spurious 
pressure mode T N ( x )  (apart from the constant mode). In fact, since the zeros of TIN(x) are the 
Chebyshev-Gauss-Lobatto points,' such a mode is identically equal to zero on the collocation 
nodes. In other words, if (u(x) ,  p ( x ) )  satisfies the system (24), (25), then (u(x),  p(x)  + TIN(x)) also 
satisfies the same set of equations. 

We now consider a projection method (i.e. the Van Kan scheme) whereby the Poisson problem 
is solved by an iterative procedure preconditioned by a finite difference matrix discretizing the 
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Figure 1. Filtered pressure field (left) and unfiltered pressure field (right) 

same differential operator and constructed on the same support (i.e. on the same collocation 
nodes). In this case the solution is built as a sum of successive corrections, 

in which every 6pi (x)  satisfies the equivalent finite difference equation. Since second-order centred 
finite differences are not able to represent such a high frequency as T N ( x ) ,  in the successive 
corrections the spurious mode is automatically filtered from the solution. Theoretically speaking, 
one should prove that the space spanned by the finite difference corrections is orthogonal to 
the space spanned by the spurious modes (3). 

The numerical results that have been obtained seem to confirm the effectiveness of such a 
filtering procedure. In Figure 1 the computed pressure isolines at Re = 10 for the driven 
regularized cavity (see results sections) using the finite difference preconditioner are given versus 
those obtained without preconditioning. In the latter the polluting presence of spurious wiggles 
is dramatically evident. 

3. SINGLE-BLOCK VALIDATION 

The developed single-block algorithm has been validated on different test cases, to be illustrated 
in the following subsections. 

3.1. Driven cavity 

The sketch in Figure 2 introduces the first test case. In this problem the flow is driven 
by a theoretical horizontal motion of the top lid of the cavity such that the horizontal 
velocity component there is given by 16x2(1 - x)’ and the vertical component is zero. 
This velocity distribution removes the singularities at the top corners of the standard 
driven cavity and therefore preserves the high accuracy of the spectral space discretization. 
The boundary conditions on the other edges are no-slip conditions (zero velocity at the 
walls). 

According to the complexity of the expected flow field, the computations were performed with 
two different grids: 
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2 2 U ( x ) = 1 6  x (1-X) 
___) 

Figure 2. Driven cavity configuration 

Table I .  Computed values of component of velocity 
at cavity centre 

Test case Present Demaret 

Re = 10 -0.1653 -0'1653 
R e =  100 - 0.16 12 -0.1612 
Re = 1000 - 0.052 1 - 0.05 1 9 

(i) a 25 x 25 grid for Reynolds numbers up to 5000 
(ii) a 41 x 41 grid at Reynolds number 10,000. 

Table I gives a quantitative comparison between the present solutions and those obtained by 
Demaret2' for the computed x-component of velocity at the centre of the cavity. 

Table I1 gives a quantitative comparison of the present results with those obtained by 
Demaret,20 Phillips and Roberts21 and Shen22 for the positions of primary and secondary 
vortices at different Reynolds numbers. The first value for each entry refer to the x-coordinate 
of the vortex centre (0 I x I l), while the second value indicates the y-value (0 5 y I 1). 
Streamline patterns are shown in Figure 3 and 4 at different Reynolds numbers. The results are 
in good agreement with those obtained by other authors, except at Re = 5000 and 10,000 where 
a discrepancy concerning the positions of the secondary bottom right vortices is evident. To 
confirm our results, these two last cases have been rerun with an even finer grid (51 x 51) to 
demonstrate that the present solution is effectively 'grid-converged'. 

3.2. Thermally driven cavity 

In order to prove the present algorithm robustness with respect to the boundary condition 
treatment, a thermally driven cavity problem was considered. A square with a side of length 1 
encloses a fluid initially at temperature To. At time t = 0 the temperatuare of one wall is raised 
to c ,  while the temperature of the opposite wall remains constant and equal to To. The other 
two walls are insulated (adiabatic walls). This test case is illustrated graphically in Figure 5. The 
non-dimensionalized variables for the problem are 
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Table I1 Vortex positions 

Re Reference Primary Secondary right Secondary left Secondary top left 

100 Present 
100 Phillips 
100 Shen 
200 Present 
200 Phillips 
400 Present 
400 Phillips 
400 Shen 
1000 Present 
1000 Phillips 
lo00 Shen 
2000 Present 
2000 Phillips 
2000 Demaret 
2000 Shen 
3000 Present 
5000 Present 
5000 Phillips 
5000 Shen 
10000 Present 
10000 Shen 

~~ 

0.599, 0.750 
0.598, 0.757 
0.609, 0.750 
0.628, 0.691 
0.621, 0.691 
0.565, 0.629 
0.573, 0.621 
0.578, 0.625 
0.540, 0.574 
0.549, 0.573 
0.547, 0-578 
0.531, 0.548 
0.525, 0.549 
0.529, 0.553 
0.531, 0.547 
0.522, 0.540 
0.5 17, 0.534 
0.525, 0.537 
0.5 16, 0.53 1 
0.514, 0.532 
0.536, 0.531 

0.959, 0.045 
0.952, 0.048 
0953, 0.047 
0933, 0.087 
0929, 0.084 
0897, 0.103 
0.902, 0.1 13 
0.922, 0.094 
0.880, 0.1 14 
0870, 0.113 
0922, 0.094 
0.859, 0.107 
0854, 0.1 13 
0850, 0.103 
0.922, 0.094 
0.842, 0.091 
0814, 0.082 
0808, 0.078 
0.922, 0.094 
0786, 0.067 
0922, 0.094 

0.038, 0.038 
0.038, 0.038 
0.031, 0.031 
0.038, 0.038 
0.038, 0.038 
0.038, 0.038 
0.048, 0.038 
0.03 1, 0,047 
0.067, 0.067 
0.071, 0.071 
0-078, 0.063 
0.080, 0.097 
0.084, 0.098 
0.087, 0.094 
0.078, 0.094 
0.082, 0.1 12 
0.08 1, 0.120 
0.084, 0.121 
0.094, 0.121 
0.065, 0.148 
OW4,0*094 

- 

- 

- 

~ 

- 

- 

- 

- 

- 

- 

- 

0,045, 0.898 
0.038, 0.887 
0.041, 0.891 
0.03 1, 0.902 
0.062, 0.900 
0.080, 0.910 
0.078, 0.902 
0.078, 0.920 
0.094, 0.920 
0.094, 0.092 

b 

c d 

Figure 3. Streamlines contours: a, Re = 10; b, Re = 100; c, Re = 400; d, Re = lo00 
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U b 

C d 

Figure 4. Streamlines contours: a, Re = 2000; b, Re = 3000; c, Re = 5000; d, Re = 10,000 

where Ra is the Rayleigh number, g is the acceleration due to gravity, p is the thermal expansion 
coefficient, v is the kinematic viscosity and a is the thermal diffusivity. The governing equations 
according to the Boussinesq approximation are 

au au au ap  Pr 
at ax ay  ax J ( R a )  “9 

- + u - + v - =  --+- 

av av av ap Pr 
at ax  ay  ay  J(Ra) 
- + u - + v - =  --+- Av + TPr,  

au av -+ -=o,  ax a y  

aT aT aT 1 
- + u - + v - = _- AT, 
at ax a y  J(Ra) 

where Pr is the Prandtl number (Pr = C,p/k) .  The initial conditions are 

u = v = O  f o r O < x <  l , O < y <  1, 

T = O  f o r O s x s l , O < y < l .  

Two different boundary condition arrangements were considered. 
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8 2  =O T=O 6 Y  

T=O rl T=l E=o rl e=O 6 X  

6 T  T=l 
6y =O 

Figure 5. Thermally driven cavity configurations 

Figure 6. Velocity vector fields 

1. Horizontal adiabatic walls (Figure 5, left): 

t > 0 ,  u = u = O  o n x = O , y = O , l ,  

T = 0 ,  x = O ,  

T = l ,  x = l ,  

dT/dy = 0, y = 0, 1. 

2. Vertical adiabatic walls (Figure 5, right): 

t > 0 ,  u = o = O  o n x = O , l , y = O ,  

T = l ,  y=O,  

T = 0 ,  y = l ,  

aTlax = 0, = 0, 1. 

The computed velocity fields induced by the imposed temperature gradients are shown in 
Figure 6. Table I11 gives a quantitative comparison between the present results and those 
obtained by Hwar et for the horizontal adiabatic walls test case at Ra = lo4 and Pr = 0.71. 
Here we give the temperature profiles going from right to left at the centreline of the cavity (i.e. 
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Table 111 Temperature profile 

X Present Hwar 

0.9830 
0.933 1 
0.8536 
0.7500 
0.6294 
05000 
0.3706 
0.2500 
0.1465 
0.0670 
0.0171 

0.959 
0.836 
0.673 
0.542 
0.495 
0.499 
0.504 
0.458 
0.326 
0.160 
0.04 1 

0.959 
0.840 
0.674 
0.542 
0.495 
0.500 
0.505 
0.459 
0.326 
0.160 
0.04 1 

y = 0.5). In general there is almost exact agreement between our results and those computed by 
Hwar et al. 

3.3. Unsteady driven cavity 

To validate the developed code for unsteady calculations, we considered once more the 
regularized driven cavity flow at higher Reynolds numbers. 

The choice of the test case stems from the calculations of Shen22 on the same configuration. 
He found a persistent oscillation when increasing the Reynolds number up to a critical value 
of 10,500. The same author has also observed that for Re 2 15,000 the dynamical behaviour of 
the flow patterns was losing time periodicity. These observations led the author to conjecture 
that a Hopf bifurcation might occur in the critical range 10,500 I Re I 15,000. 

For our computations we selected the first critical Reynolds numbers (i.e. Re = 10,500). 
The grid used for this test case was a 41 x 41 one. A finer grid of 51 x 51 has been employed 

to check that the obtained results were 'grid-converged'. 

Figure 7. Time behaviour of mean kinetic energy 
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0 0.2 0.4 0.6 0.8 I 1.1 I 

Ad i 111. F'requ e 11 c y 
Figure 8. Spectral analysis of kinetic energy 

I .6 I .R 1 

d e 

Figure 9. Streamline contours: a, t = T; b, t = T + T/4; c, t = T + T/2; d, t = T + 3T/4; e, t = 2T (7; period) 

In agreement with what has been observed by SheqZ2 also in our case at Re = 10,500 no 
steady solution is found; instead, after a long transient the flow finally becomes periodic in time. 

In Figure 7 we show the time behaviour of the mean kinetic energy &(uf + u f ) ,  which reaches 
an asymptotic behaviour only after quite a long integration time (on the x-axis each unit 
corresponds to 10 time steps, -0.08 time units). 

A spectral analysis of both the x-component of velocity and the kinetic energy at a fixed point 
(x = 0.038, y = 0990) shows a frequency peak (see Figure 8) which reveals that a periodic motion 
is taking place with a frequency of about 0.33 frequency units. Finally, in Figure 9 we present 
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five streamline patterns extracted within one full time period to show the quite complex flow 
behaviour (vortex breakdown, appearance and disappearance of tertiary vortices, etc.). 

4. MULTIDOMAIN ALGORITHM 

In the previous sections we have concentrated on the application of pseudospectral methods for 
the Navier-Stokes equations on the standard Chebyshev square. There have been a number of 
recent developments on the use of spectral techniques in more general g e ~ m e t r i e s . ~ ~ . ~  

The basic idea underlying the multidomain approach for spectral methods relies on partition- 
ing the given geometry into union of elementary squares. The approximation is spectral if 
increased accuracy is obtained by increasing the order of the approximation in a fixed number 
of subdomains rather than resorting to a further partitioning. Apart from the evident advantages 
of being able to deal with complex geometries, other advantages might be achieved using domain 
decomposition techniques: better distribution of collocation points, which improves the resolu- 
tion; better conditioning of the associated algebraic problems (due to a less extreme ratio of the 
largest to the smallest grid spacings); finally, evident advantages in the implementation of spectral 
codes on parallel machines. 

A crucial aspect of any domain decomposition method is the manner in which solutions on 
contiguous domains are matched. In the following we will concentrate only on ‘patching’ 
methods that have been selected in the frame of the present work. 

Patching methods take a pointwise view of the differential equation. If the equations have 
order d, then at the interface of contiguous domains the solution and all its derivatives of order 
up to d - 1 must be continuous.26 Normally, elliptic problems require implicit methods for the 
interface treatment. The matrices which represent the global algebraic system have a block 
structure due to the domain decomposition, and only adjacent subdomains (or blocks) are 
coupled. One obvious strategy would be a direct Gauss elimination, but this proves to be 
expensive in terms of storage and CPU time. Another approach which avoids the solution of a 
global system is based on an iterative procedure amongst subdomains, yielding a sequence of 
a single-domain boundary value problem. One simply iterates between adjacent subdomains by 
imposing alternately the continuity of the solution and the continuity of the normal derivatives. 
At the limit of the convergence process, continuity conditions at the interfaces are therefore 
~atisfied.~’ 

In the next subsection the particular iterative method that has been used in the present work 
in the framework of the incompressible Navier-Stokes equations will be illustrated. 

4.1. The iterative method 

Many iterative procedures have been proposed in the last five years.28329 We selected the one 
proposed by Funaro et aL9 In such a procedure, at each iteration a relaxation is accomplished 
at the subdomain interfaces. The authors also provide an appropriate strategy for the automatic 
selection of the relaxation parameter to be used at each iteration. To illustrate the procedure, 
we confine ourselves to a Helmholtz problem: 

(27) -Au + pu = f on R with u = 0 on an. 

Defining R = (--a, b) x ( -  1, 1) decomposed into the subsets R, = ( -a ,  0) x (-  1, 1) and f12 = 
(0, b) x ( -  1, I), we denote by 8Cl the boundary of R and by r = 0 x ( -  1 , l )  the interface between 
Q, and f12 (see Figure 10). The iterative procedure goes as follows: 
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and 

~~ 

a 0 b 

Figure 10. Partitioning of domain 

where 

A n + l  = Ow(") + ( 1  - e)n, on r for n 2 1 (34) 

and 0 ~ 1 0 ,  11 is a relaxation parameter. If 8 = 1, we do not have relaxation and under this 
condition convergence is obtained if and only if a > b.' An iterative relaxation scheme of this 
form was formerly proposed by Zanolli3' If the sequences v(") and w(") converge, their limits are 
necessarily the solutions u and w to (27). 

If we consider the collocated versions of (28) and (31), it is possible to introduce a dynamical 
procedure to determine the relaxation parameter 8. In fact, if we define the error functions at 
the N nodes at the interface as 

et.N = vk - vk- E P i  and ekTN = w\ - wk- E P i  for n 2 2, (35) 

where the superscript n refers to the nth iteration, it is possible to select the value of 0 at iteration 
n as 

whose associated norms is ((uI( = ,/(u, u). For the formal convergence proofs and more precise 
details the reader is referred to the original paper.' 

4.2. Application to Navier-Stokes equations 

As already mentioned, when the incompressible Navier-Stokes equations are solved by means 
of a projection method, with the diffusive part treated in an implicit fashion, the time-stepping 
procedure consists of a cascade of two Helmhotz problems for the predicted velocity components 
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and a Poisson equation for the pressure. If one tackles each single differential problem with the 
iterative procedure by subdomains described in the previous subsection, at the end of each time 
step the solution is equivalent to the one hypothetically achievable by solving the whole domain 
at once. Let us develop this basic idea. We start by solving two Helmholtz problems for li and 
o* by imposing iteratively the continuity of the function and of its normal derivatives for both 
the predicted velocity components. When convergence of the iterative procedure by subdomains 
is attained, the two variables willEC'(R). The continuity of div(u) on the whole domain is 
therefore guaranteed. In other words we obtain a right-hand side for the Poisson problem (the 
pressure equation) that is of class E Co(R). This condition ensures that the pressure p E C'(i2). 
Under such a condition the iterative procedure (28, 3 1) becomes applicable.' In particular, 
when the iterative procedure applied to the Poisson equation converges, we will recover the 
pressure E C' at the interfaces as well. Finally let us consider the projection step 

U " + l  - 4 
At 

+ +V(P"+ - p") = 0. (37) 

It is evident that the final value of the velocity (d"")) will E C'(i2,) at the interior points. On 
the interfaces the function will be continuous, since it is the sum of continuous functions, and 
its first derivative will match on the interface with a deviation O(At2). In particular the mismatch 
of the first derivative at the interface is quantified in the normal direction by 

and in the tangential direction by 

Both the errors correspond to the splitting errors at the boundaries typical of any projection 
method. In particular the mismatch on the normal derivative leads to an error that is analogous 
to the one associated with the slip error at a solid boundary, while the mismatch in the tangential 
direction is equivalent to the 'permeability' error at  inflow-outflow boundaries. Of course for 
stationary problems at steady state (i.e. convergence) the errors (38) and (39) at the interface 
drop to zero and the continuity of both the velocities and their first derivatives is ensured, 
leading to the correct solution on the whole domain. 

For unsteady problems the errors at the interface are of the same order as those at the 
boundaries and for this reason the present method may also be used for unsteady calculations. 

5. MULTIDOMAIN VALIDATION 

Laminar and turbulent flow in a pipe or channel expansion is a complex flow situation often 
used as a test for numerical and experimental techniques. We choose the problem of the flow 
in an asymmetric channel expansion to demonstrate the viability of the present multidomain 
techniques. 

The channel configuration is shown in Figure 11. It is assumed that the channel length prior 
to the step is sufficiently long to allow the imposition of a parabolic profile at the inlet. The 
Navier-Stokes equations are non-dimensionalized with respect to the inlet channel half-width 
h and the maximum velocity at the inlet (Re  = Umaxh/v). 
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Figure 1 1 .  Geometry of backward-facing step 

Figure 12. Grid configuration 

The step height is taken to be the same as the channel half-width, while the non-dimensional 
length of the channel following the expansion is taken to be sufficiently long (-20) so as not 
to affect the phenomena of interest. For the computation we restricted ourselves to laminar, 
moderate Reynolds numbers (i.e. - 100). There are several criteria on which comparisons can 
be made with previous numerical work and experiments: the position of the centre of the 
separated vortex; the point of the flow reattachment; the streamwise velocity profile at  various 
points downstream. 

For the computation we partitioned the domain into three subdomains of 15 x 15 nodes 
properly mapped according to the height and length of each subelement. The grid is shown in 
Figure 12. 

In Figure 13, we show the streamline contours at  Re = 109. It is seen that the reattachment 
length is 5.1, which is in good agreement with both the experimental value5 and values obtained 
with other spectral  computation^.^^ 

Figure 13. Streamline contours 

Figure 14. Isopressure lines 
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Y 

Figure 15. Streamwise velocity profiles: left, present; right, Patera’ 

In Figure 14 we show the isopressure lines at the same Reynolds number. In Figure 15 we 
compare the streamwise velocity profiles at various points downstream with those obtained by 
Patera with a ‘spectral element’ code.’ 

6. CONCLUSIONS 

The two-dimensional incompressible Navier-Stokes equations have been solved by a pseudo- 
spectral Chebyshev expansion method using a second-order time-splitting scheme (projection 
method). 

The first task has been the design of an efficient ‘single-block’ algorithm to be used as 
computational kernel for a multidomain solver. 

The mentioned scheme requires the solution of two Helmholtz problems and a Poisson 
problem at each time step. Each elliptic scalar problem has been solved by means of an iterative 
procedure preconditioned by centred finite differences. In particular, the above-mentioned 
iterative procedure applied to the inversion of the Poisson problem for the pressure behaves 
like a ‘low-passband’ filter, removing spurious pressure modes from the calculation without any 
loss of accuracy. 

Once the ‘single-block’ solver has been validated, a multidomain algorithm has been designed 
by taking advantage of the algorithm structure of the monodomain one. More precisely, an 
iterative procedure ‘by subdomains’ has been applied to each scalar equation arising after the 
application of the time-splitting scheme. 

The devised procedures have been tested and validated for a number of test cases both for 
the ‘single-block’ soler and for its multidomain configuration. 

The major limitations of the present method as presented in this paper are due to the 
inefficiency of the multidomain algorithm when dealing with ‘internal corners’ and the restric- 
tions on the allowed time step when solving high-Reynolds-number problems. These deficiencies 
are currently being addressed, the former by the implementation of a novel ‘iteration by 
subdomains’ algorithm and the latter by the introduction of an implicit procedure for the 
treatment of the advective terms. 
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